Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Asunto principal
Tópicos
Tipo del documento
Intervalo de año
1.
PLoS One ; 18(5): e0285601, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2313969

RESUMEN

During pandemics like COVID-19, both the quality and quantity of services offered by businesses and organizations have been severely impacted. They often have applied a hybrid home office setup to overcome this problem, although in some situations, working from home lowers employee productivity. So, increasing the rate of presence in the office is frequently desired from the manager's standpoint. On the other hand, as the virus spreads through interpersonal contact, the risk of infection increases when workplace occupancy rises. Motivated by this trade-off, in this paper, we model this problem as a bi-objective optimization problem and propose a practical approach to find the trade-off solutions. We present a new probabilistic framework to compute the expected number of infected employees for a setting of the influential parameters, such as the incidence level in the neighborhood of the company, transmission rate of the virus, number of employees, rate of vaccination, testing frequency, and rate of contacts among the employees. The results show a wide range of trade-offs between the expected number of infections and productivity, for example, from 1 to 6 weekly infections in 100 employees and a productivity level of 65% to 85%. This depends on the configuration of influential parameters and the occupancy level. We implement the model and the algorithm and perform several experiments with different settings of the parameters. Moreover, we developed an online application based on the result in this paper which can be used as a recommender for the optimal rate of occupancy in companies/workplaces.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Lugar de Trabajo , Modelos Estadísticos
2.
Spat Spatiotemporal Epidemiol ; 44: 100560, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2150639

RESUMEN

The global extent and temporally asynchronous pattern of COVID-19 spread have repeatedly highlighted the role of international borders in the fight against the pandemic. Additionally, the deluge of high resolution, spatially referenced epidemiological data generated by the pandemic provides new opportunities to study disease transmission at heretofore inaccessible scales. Existing studies of cross-border infection fluxes, for both COVID-19 and other diseases, have largely focused on characterizing overall border effects. Here, we couple fine-scale incidence data with localized regression models to quantify spatial variation in the inhibitory effect of an international border. We take as a case study the border region between the German state of Saxony and the neighboring regions in northwestern Czechia, where municipality-level COVID-19 incidence data are available on both sides of the border. Consistent with past studies, we find an overall inhibitory effect of the border, but with a clear asymmetry, where the inhibitory effect is stronger from Saxony to Czechia than vice versa. Furthermore, we identify marked spatial variation along the border in the degree to which disease spread was inhibited. In particular, the area around Löbau in Saxony appears to have been a hotspot for cross-border disease transmission. The ability to identify infection flux hotspots along international borders may help to tailor monitoring programs and response measures to more effectively limit disease spread.


Asunto(s)
COVID-19 , Animales , Humanos , COVID-19/epidemiología , República Checa , Incidencia , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA